Print all increasing sequences of length k from first n natural numbers

Given two positive integers n and k, print all increasing sequences of length k such that the elements in every sequence are from first n natural numbers.

Examples:

Input: k = 2, n = 3
Output: 1 2
1 3
2 3

Input: k = 5, n = 5
Output: 1 2 3 4 5

Input: k = 3, n = 5
Output: 1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

We strongly recommend to minimize the browser and try this yourself first.

It’s a good recursion question. The idea is to create an array of length k. The array stores current sequence. For every position in array, we check the previous element and one by one put all elements greater than the previous element. If there is no previous element (first position), we put all numbers from 1 to n.

Below is the implementation of above idea :

C++

 // C++ program to  print all increasing sequences of // length 'k' such that the elements in every sequence // are from first 'n' natural numbers. #include using namespace std;    // A utility function to print contents of arr[0..k-1] void printArr(int arr[], int k) {     for (int i=0; i

Java

 // Java program to print all  // increasing sequences of // length 'k' such that the  // elements in every sequence // are from first 'n'  // natural numbers.    class GFG {            // A utility function to print      // contents of arr[0..k-1]     static void printArr(int[] arr, int k)     {         for (int i = 0; i < k; i++)             System.out.print(arr[i] + " ");         System.out.print(" ");     }            // A recursive function to print     // all increasing sequences     // of first n natural numbers.      // Every sequence should be     // length k. The array arr[] is      // used to store current sequence     static void printSeqUtil(int n, int k,                               int len, int[] arr)     {                    // If length of current increasing         // sequence becomes k, print it         if (len == k)         {             printArr(arr, k);             return;         }                // Decide the starting number          // to put at current position:         // If length is 0, then there         // are no previous elements         // in arr[]. So start putting          // new numbers with 1.         // If length is not 0,          // then start from value of         // previous element plus 1.         int i = (len == 0) ? 1 : arr[len - 1] + 1;                // Increase length         len++;                // Put all numbers (which are          // greater than the previous         // element) at new position.         while (i <= n)         {             arr[len - 1] = i;             printSeqUtil(n, k, len, arr);             i++;         }                // This is important. The          // variable 'len' is shared among         // all function calls in recursion          // tree. Its value must be         // brought back before next          // iteration of while loop         len--;     }            // This function prints all      // increasing sequences of     // first n natural numbers.      // The length of every sequence     // must be k. This function     // mainly uses printSeqUtil()     static void printSeq(int n, int k)     {                    // An array to store          // individual sequences         int[] arr = new int[k];                    // Initial length of          // current sequence         int len = 0;          printSeqUtil(n, k, len, arr);     }        // Driver Code     static public void main (String[] args)     {         int k = 3, n = 7;         printSeq(n, k);     } }    // This code is contributed by Smitha.

/div>

Python3

 # Python3 program to print all # increasing sequences of length # 'k' such that the elements in # every sequence are from first # 'n' natural numbers.    # A utility function to  # print contents of arr[0..k-1] def printArr(arr, k):     for i in range(k):         print(arr[i], end = " ");     print();    # A recursive function to print  # all increasing sequences of  # first n natural numbers. Every  # sequence should be length k.  # The array arr[] is used to # store current sequence. def printSeqUtil(n, k,len1, arr):            # If length of current      # increasing sequence     # becomes k, print it     if (len1 == k):         printArr(arr, k);         return;        # Decide the starting number      # to put at current position:     # If length is 0, then there      # are no previous elements     # in arr[]. So start putting      # new numbers with 1. If length      # is not 0, then start from value      # of previous element plus 1.     i = 1 if(len1 == 0) else (arr[len1 - 1] + 1);        # Increase length     len1 += 1;        # Put all numbers (which are greater     # than the previous element) at     # new position.     while (i <= n):         arr[len1 - 1] = i;         printSeqUtil(n, k, len1, arr);         i += 1;        # This is important. The variable     # 'len' is shared among all function     # calls in recursion tree. Its value      # must be brought back before next     # iteration of while loop     len1 -= 1;    # This function prints all increasing  # sequences of first n natural numbers. # The length of every sequence must be # k. This function mainly uses printSeqUtil() def printSeq(n, k):         arr =  * k; # An array to store                        # individual sequences         len1 = 0; # Initial length of                   # current sequence         printSeqUtil(n, k, len1, arr);    # Driver Code k = 3;  n = 7; printSeq(n, k);    # This code is contributed by mits

C#

 // C# program to print all  // increasing sequences of // length 'k' such that the  // elements in every sequence // are from first 'n'  // natural numbers. using System;    class GFG {            // A utility function to print      // contents of arr[0..k-1]     static void printArr(int[] arr, int k)     {         for (int i = 0; i < k; i++)             Console.Write(arr[i] + " ");         Console.WriteLine();     }            // A recursive function to print     // all increasing sequences     // of first n natural numbers.      // Every sequence should be     // length k. The array arr[] is      // used to store current sequence     static void printSeqUtil(int n, int k,                               int len, int[] arr)     {                    // If length of current increasing         // sequence becomes k, print it         if (len == k)         {             printArr(arr, k);             return;         }                // Decide the starting number          // to put at current position:         // If length is 0, then there         // are no previous elements         // in arr[]. So start putting          // new numbers with 1.         // If length is not 0,          // then start from value of         // previous element plus 1.         int i = (len == 0) ? 1 : arr[len - 1] + 1;                // Increase length         len++;                // Put all numbers (which are          // greater than the previous         // element) at new position.         while (i <= n)         {             arr[len - 1] = i;             printSeqUtil(n, k, len, arr);             i++;         }                // This is important. The          // variable 'len' is shared among         // all function calls in recursion          // tree. Its value must be         // brought back before next          // iteration of while loop         len--;     }            // This function prints all      // increasing sequences of     // first n natural numbers.      // The length of every sequence     // must be k. This function     // mainly uses printSeqUtil()     static void printSeq(int n, int k)     {                    // An array to store          // individual sequences         int[] arr = new int[k];                    // Initial length of          // current sequence         int len = 0;          printSeqUtil(n, k, len, arr);     }        // Driver Code     static public void Main ()     {         int k = 3, n = 7;         printSeq(n, k);     } }    // This code is contributed by Ajit.



Output:

1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 3 4
1 3 5
1 3 6
1 3 7
1 4 5
1 4 6
1 4 7
1 5 6
1 5 7
1 6 7
2 3 4
2 3 5
2 3 6
2 3 7
2 4 5
2 4 6
2 4 7
2 5 6
2 5 7
2 6 7
3 4 5
3 4 6
3 4 7
3 5 6
3 5 7
3 6 7
4 5 6
4 5 7
4 6 7
5 6 7